An MEG-based brain–computer interface (BCI)
نویسندگان
چکیده
منابع مشابه
An MEG-based brain-computer interface (BCI).
Brain-computer interfaces (BCIs) allow for communicating intentions by mere brain activity, not involving muscles. Thus, BCIs may offer patients who have lost all voluntary muscle control the only possible way to communicate. Many recent studies have demonstrated that BCIs based on electroencephalography (EEG) can allow healthy and severely paralyzed individuals to communicate. While this appro...
متن کاملAdaptive SVM-Based Classification Increases Performance of a MEG-Based Brain-Computer Interface (BCI)
One problem in current Brain-Computer Interfaces (BCIs) is non-stationarity of the underlying signals. This causes deteriorating performance throughout a session and difficulties to transfer a classifier from one session to another, which results in the need of collecting training data every session. Using an adaptive classifier is one solution to keep the performance stable and reduce the amou...
متن کاملAn auditory brain-computer interface (BCI).
Brain-computer interfaces (BCIs) translate brain activity into signals controlling external devices. BCIs based on visual stimuli can maintain communication in severely paralyzed patients, but only if intact vision is available. Debilitating neurological disorders however, may lead to loss of intact vision. The current study explores the feasibility of an auditory BCI. Sixteen healthy volunteer...
متن کاملDevelopment of a Brain Computer Interface (BCI) Speller System Based on SSVEP Signals
BCI is one of the most intriguing technologies among other HCI systems, mostly because of its capability of recording brain activities. Spelling BCIs, which help paralyzed people to maintain communication, are one of the striking topics in the field of BCI. In this scientific a spelling BCI system with high transfer rate and accuracy that uses SSVEP signals is proposed.In addition, we suggested...
متن کاملNeurofeedback-based motor imagery training for brain-computer interface (BCI).
In the present study, we propose a neurofeedback-based motor imagery training system for EEG-based brain-computer interface (BCI). The proposed system can help individuals get the feel of motor imagery by presenting them with real-time brain activation maps on their cortex. Ten healthy participants took part in our experiment, half of whom were trained by the suggested training system and the o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: NeuroImage
سال: 2007
ISSN: 1053-8119
DOI: 10.1016/j.neuroimage.2007.03.019